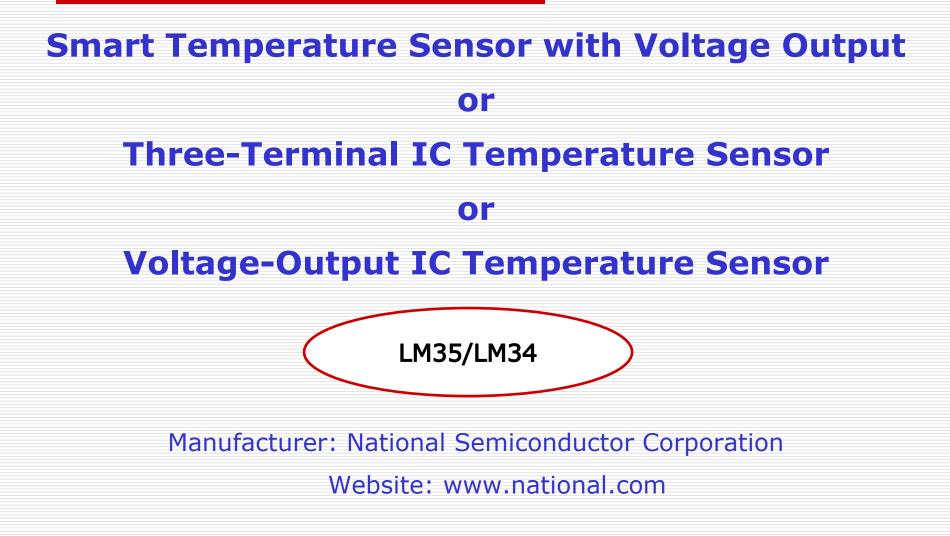


Dr. H. K. Verma

1


Distinguished Professor (EEE) Sharda University, Greater Noida

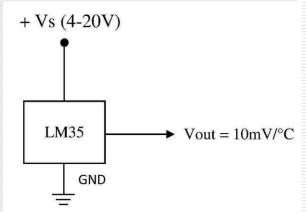
(Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee)

CONTENTS

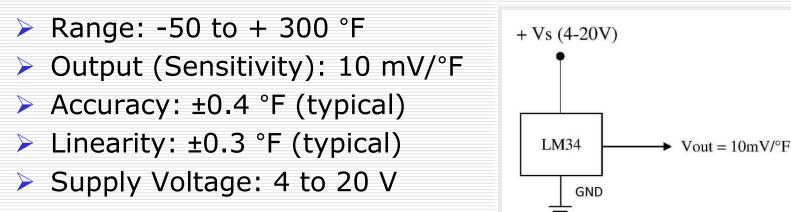
- Smart Temperature Sensor with Voltage Output (Three-Terminal IC Temperature Sensor) (Voltage-Output IC Temperature Sensor)
- Smart Temperature Sensor with Current Output (Two-Terminal IC Temperature Sensor) (Current-Output IC Temperature Sensor)
- 3. Smart Humidity and Temperature Sensor
- 4. Smart MEMS-Based Acceleration Sensor (iMEMS Accelerometer)
- 5. Smart MEMS-Based Pressure Sensor (Integrated Silicon Pressure Sensor)

Case Study # 1

Case Studies of Smart Sensors & Smart MEMS


Major Specifications

LM35: Centigrade (or Celcius) Temperature Sensor


Range: -55 to +150 °C

LM35.

- Output (Sensitivity): 10 mV/°C
- Accuracy: ±0.2 °C (typical)
- Linearity: ±0.2 °C (typical)
- Supply Voltage: 4 to 20 V

LM34: Fahrenheit Temperature Sensor

Principle of LM35/LM34 (1)

- These sensors are based on temperature sensitivity of band gap voltage of silicon junction.
- Band gap (or energy gap) is the energy range in a solid where no free electron states can exist.
- It refers to the energy gap (in electron volts, eV) between the top of the valance band and the bottom of the conduction band.
- In other words, it is the smallest amount of energy in eV required to free on outer-shell electron (or valance electron) from its orbit about the nucleus to become a mobile charge carrier (i.e. free electron).

Case Studies of Smart Sensors & Smart MEMS

LM35.....

Principle of LM35/LM34 (2)

- □ In conductors, the valance band and conduction band overlap, hence they may not have a band gap.
- □ In insulators, the band gap is too large to be bridged.
- In semiconductors, the band gap is small. Electrons can gain energy to jump from valance band to conduction band by adsorbing either phonons (heat energy) or photons (light energy).
- So, band gap in a semiconductor will decrease as its temperature is raised.

LM35.....

Principle of LM35/LM34 (3)

This property (temperature sensitivity) of semiconductors forms the basis of all silicon temperature sensors.

- □ Values of band gap at 300K (i.e., 27°C) for some semiconductors of interest are:
 - Si : 1.11 eV
 - Ge : 0.67 eV
 - Se : 1.74 eV
 - GaAs : 1.43 eV
 - GaP : 2.26 eV
 - GaS : 2.50 eV

Principle of LM35/LM34 (4)

Voltage across forward-biased base-emitter junction of a transistor changes with temperature and is given by

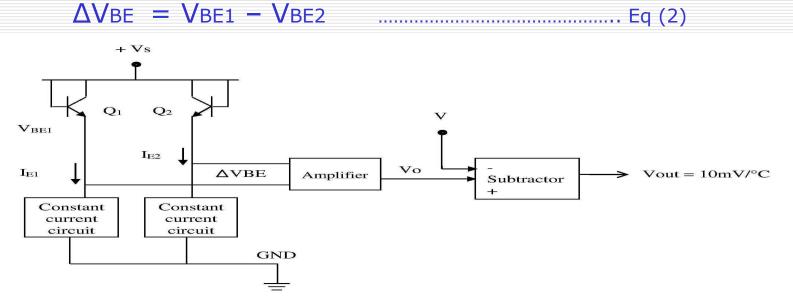
$$V_{BE} = V_{Go} \quad (1 - \frac{T}{To}) + V_{BEo} \left(\frac{To}{T}\right) + \frac{nKT}{q} \ln \left(\frac{To}{T}\right) + \left(\frac{kT}{q}\right) \ln \left(\frac{IE}{Is}\right)$$

- where T = Actual temperature in kelvins
 - To = Reference temperature in kelvins
 - IE = Emitter current
 - Is = Reverse saturation current
 - Vgo = Band-gap voltage at absolute zero temperature

VBEO = Base-emitter voltage at temperature To and current Is

 $K = Boltzmann's constant = 1.38*10^{-23} J/K$

- q = Charge on an electron = $1.6*10^{-19}$ C
- n = A device -dependent constant


LM35.....

.....Eq. (1)

Principle of LM35/LM34 (5)

❑ Let us have two identical transistors, Q1 and Q2, operating at the same temperature T and same reverse saturation current Is, but working with different emitter currents I_{E1} and I_{E2}, respectively, and connect their base-emitter voltages in differential mode, as shown below.

Then the differential output voltage is given by

Note: This is not the actual circuit of the device; created to explain the underlying concepts.

LM35

LM35.....

Principle of LM35/LM34 (6)

If we substitute the values of VBE1 and VBE2 from equation (1) into equation (2), we get

Thus, ΔV_{BE} is directly proportional to absolute temperature T in kelvins.

Design Values for LM35

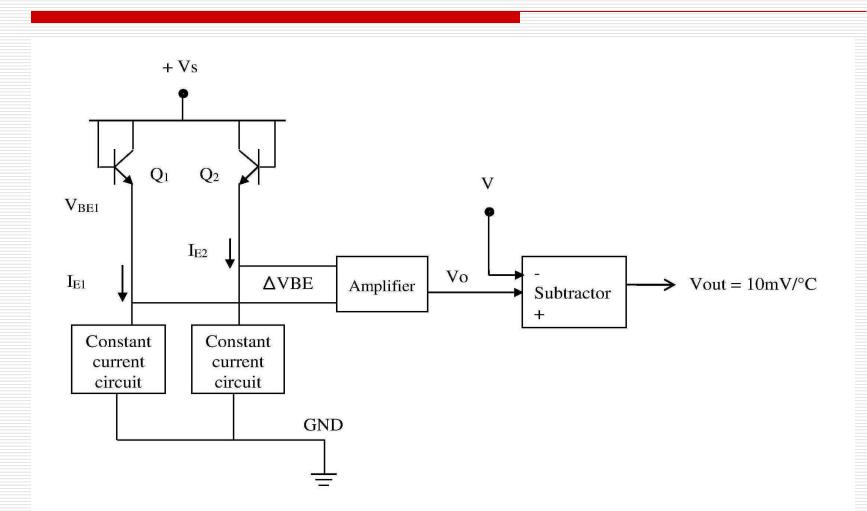
(With reference to the Conceptual Circuit Schematic of LM35 shown in next slide)

 $I_{E1} = 2* I_{E2}$ (by design)

So $\Delta V_{BE} = (kT/q) \ln 2 = BT$ (say)

where B is another constant given by

 $B = (k/q) \ln 2 = 59.8 \,\mu V/K$


> ΔV_{BE} is amplified by a factor of 167 to get Vo, so $Vo = 59.8 \ \mu V/K \ * 167 = 10 \ mV/K$

Corresponding to 0°C or 273K, Vo = 2730 mV

A fixed voltage V=2.730 V is subtracted from Vo

Therefore, final output Vout is given by Vout = 10mV/°C So the final output is 0mV at 0°C, +1500mV at +150°C, -550mV at -55°C)

Conceptual Circuit Schematic of LM35

Note: This is not the actual circuit of the device; created to explain the underlying concepts.

LM35.

Packages and Pins of LM35

GND — 4

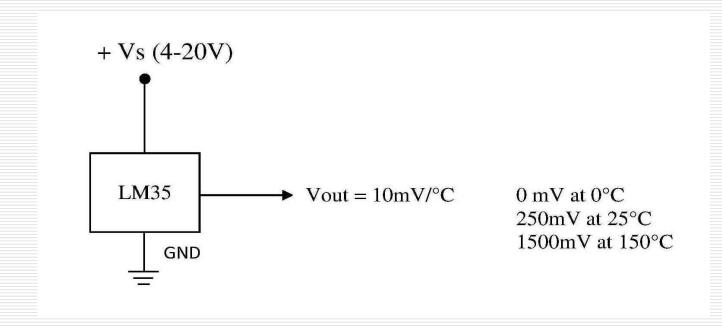
5

- N.C.

LM35.....

© 2021: Dr. H. K. Verma

+Vs

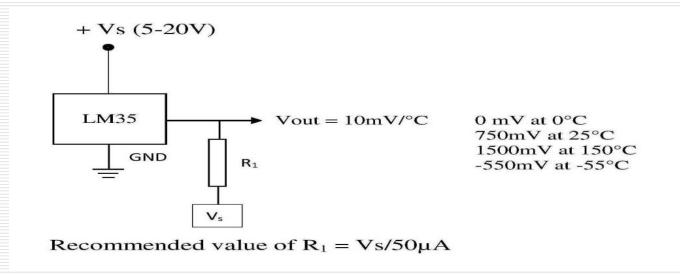

GND

VOUT

LM35 Application Circuits (1)

1. Circuit for sensing positive temperatures only

- Uses single power supply (Vs only)
- Output is always positive for positive temperatures
- For input temperature of 0°C, Vout = 0 mV
- For input temperature of 25° C, Vout = 250 mV
- For input temperature of 150°C, Vout = 1500 mV



LM35.

2. Circuit for sensing temperature over full range

- Uses dual power supply (+Vs and -Vs)
- Output is +ve for +ve temperatures and -ve for -ve temperatures
- For input temperature of 0° C, Vout = 0 mV
- For input temperature of 150°C, Vout = 1500 mV
- For input temperature of -55°C, Vout = -550 mV

LM35.

Case Study # 2

Smart Temperature Sensor with Current Output

or

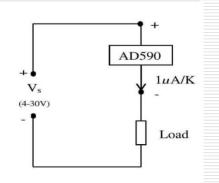
Two-Terminal IC Temperature Sensor

or

Current-Output IC Temperature Sensor

Manufacturer: Analog Devices

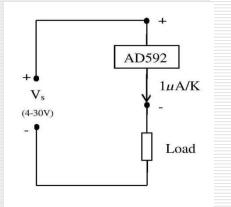
Website: www.analog.com


Major Specifications

□ AD590: Two-Terminal IC Temperature Sensor

Range: -55°C to +150°C

AD590


- Output (Sensitivity): 1µA/K
- Accuracy: ±0.5 °C (typical)
- Linearity: ±0.3 °C (over full range)
- Power Supply Range: 4V to 30V

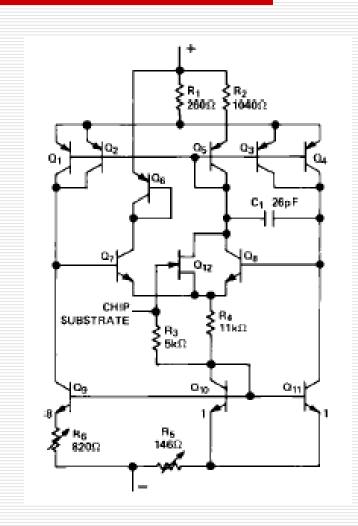
□ AD592: Two-Terminal Precision IC Temperature Sensor

- ➢ Range: -25°C to + 105°C
- Output (Sensitivity): 1µA/K
- Accuracy: ±0.5 °C (typical)
- Linearity: ±0.15 °C (over full range)
- Power Supply Range: 4V to 30V

Note that AD592 has better linearity but smaller temperature range than AD590

Principle of AD590/592

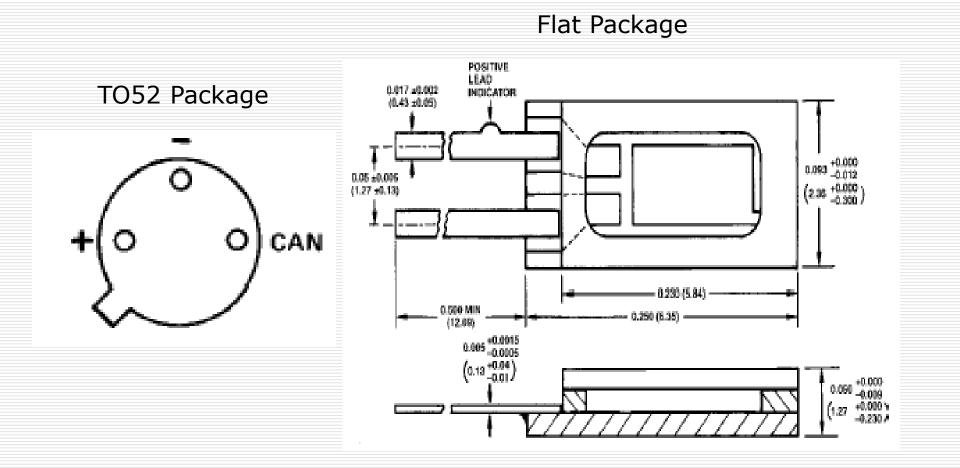
These sensors, like LM35 and LM34, are also based on temperature sensitivity of band gap voltage of silicon junction. The detailed principle can be seen from the Case Study of LM35/34.


□ So the following equation is applicable to AD590/AD592 too:

However, ΔV_{BE} is converted here to a proportional total device current, which is the output current signal proportional to absolute temperature T, namely

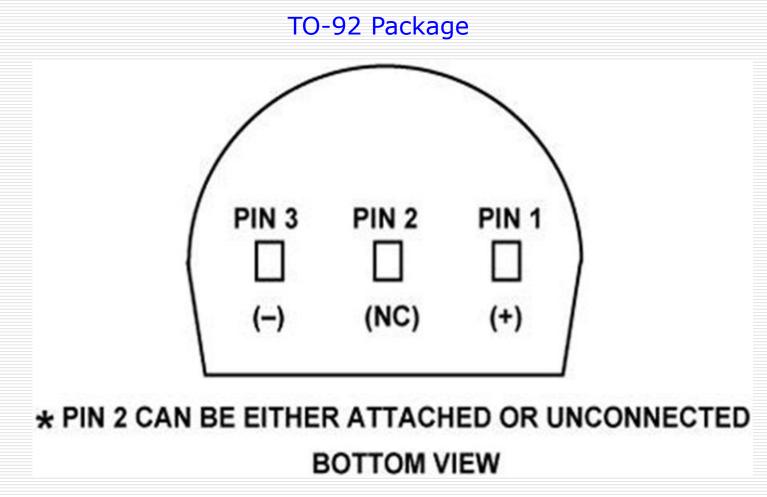
 $Iout = 1\mu A/K$

AD590.....


Circuit Diagram of AD590

(Source: Data Sheet of AD590)

AD590.....


Packages and Pins of AD590

(Source: Data Sheet of AD590)

AD590.

Package and Pins of AD592

(Source: Data Sheet of AD592)

Case Studies of Smart Sensors & Smart MEMS

AD590.

Case Study # 3

Smart Humidity and Temperature Sensor

Manufacturer: Sensirion Corporation Website: www.sensirion.com

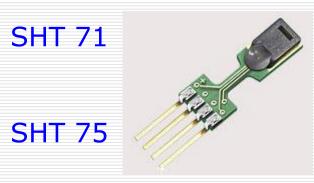
SHTxx

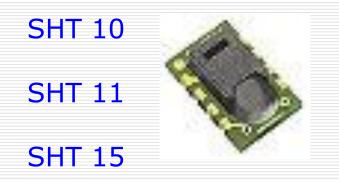
Salient Features

- Senses relative humidity and temperature
- Also measures dew point
- Single chip sensor-cum-transmitter
- Capacitive polymer sensing element for relative humidity
- Band-gap for temperature sensing
- CMOS & micromachining technologies combined
- Patented as "CMOS Sens" Technology
- Digital serial output
- □ Self calibration
- Evaluation kits from the manufacturer

SHTxx

Performance Features


- Fast response
- O Ultra low power consumption
- Automatic power down feature
- Excellent long term stability
- Excellent performance-to-price ratio
- Insensitivity to external disturbance (EMC)
- Fully calibrated digital output
- Data with CRC bits

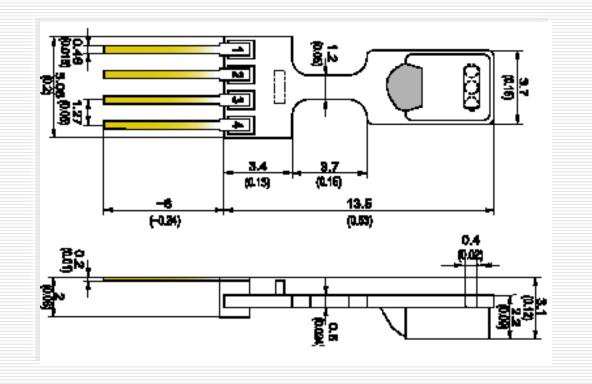


Devices in SHTxx Series

Pin-Type Package

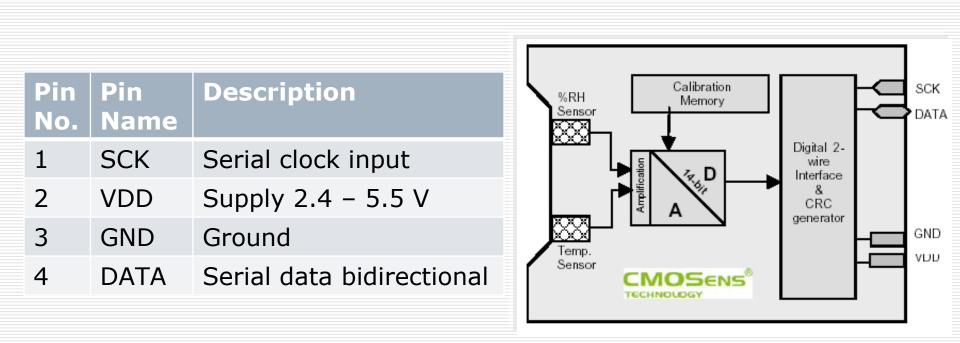
SMD Package

Technical Data


Feature	SHT 71	SHT 75	SHT 10	SHT 11	SHT 15
RH Accuracy	± 3%	\pm 1.8%	± 4.5%	± 3%	± 2%
RH Range	0-100% for all				
RH Stability	<0.5% per year for all				
Temp. Accuracy @ 25°C	± 0.4°C	± 0.3°C	$\pm 0.5^{\circ}C$	± 0.4°C	± 0.3°C
Temp. Range	-40 to	+120°C	for all		
Power Consumption	30µW	20µW	30µW	30µW	30µW
Response Time		4s	for all		
Package	4-Pir	SIL		SMD (LCC)*	

*Surface mounting device (leadless chip carrier)

Case Studies of Smart Sensors & Smart MEMS

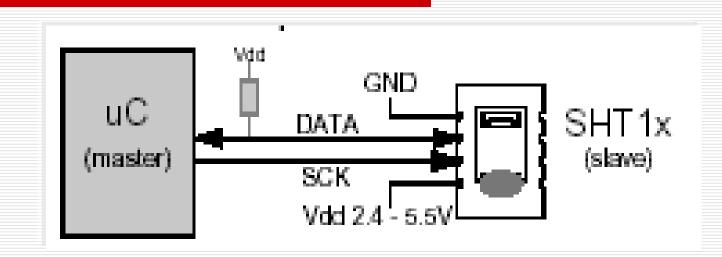

SHTxx

Dimensions of SHT7x

(Source: Data sheet of SHTxx)

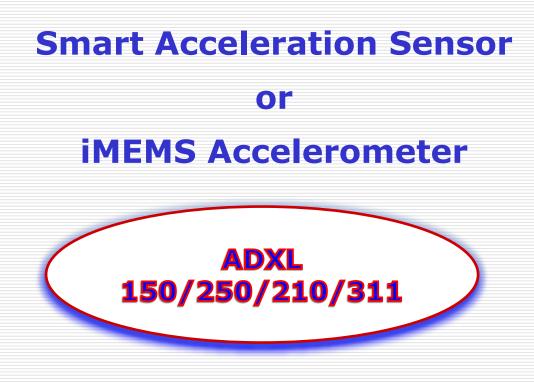
Block Diagram

Serial interface of SHTxx is similar to but not compatible with I²C


SHTxx

On-Chip Circuitry

- Amplifiers for amplifying outputs of sensors
- □ 14-bit ADC for analog to digital conversion
- Serial interface circuit for 2-wire serial transmission
- 8-bit CRC generator for error control
- Calibration circuit for self calibration
- Calibration memory for storing calibration coefficients

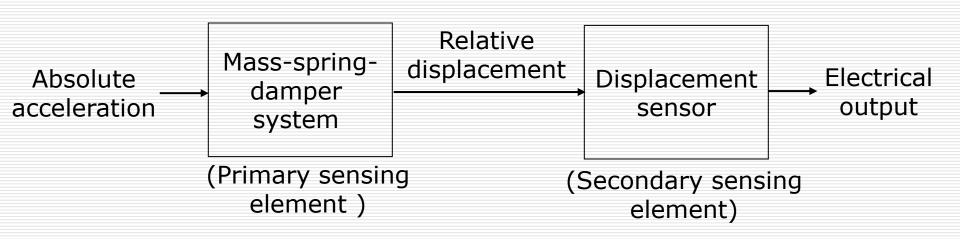

(Source: Data sheet of SHTxx)

- SCK: Serial clock, used to synchronize the communication between microcontroller and SHTxx
- DATA: Tristate pin, used to transfer data in and out of SHTxx Changes after the falling edge of SCK Valid on the rising edge of SCK
- Vdd: Power supply may be decoupled with a 100nF capacitor across pins Vdd and GND

Case Studies of Smart Sensors & Smart MEMS

SHTxx

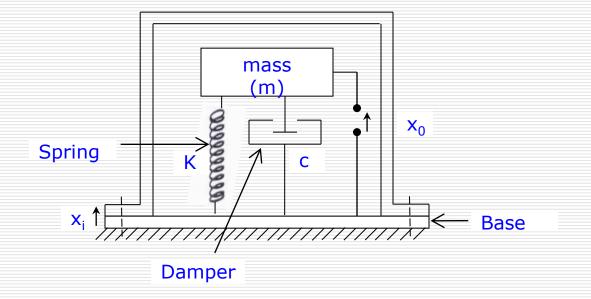
Case Study # 4



Manufacturer: Analog Devices

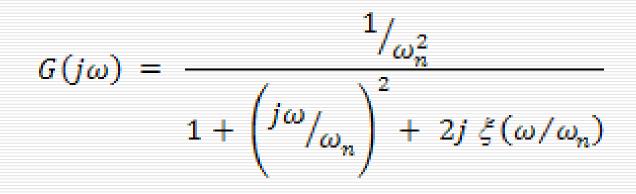
Website: www.analog.com

Case Studies of Smart Sensors & Smart MEMS


Basic Principle of Acceleration Sensors

Displacement Sensor Options

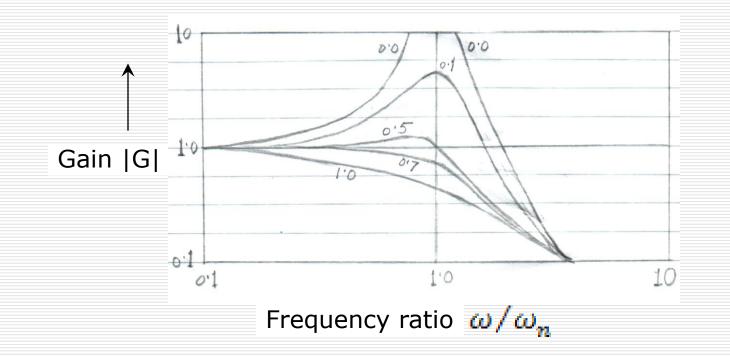
- (a) Strain gauge: Output is change in resistance
- (b) Capacitive displacement sensor: Output is change in capacitance
- (c) Piezoelectric transducer: Output is electric charge


Mass-Spring-Damper (MSD) System

m = mass in kg

- c = damping constant in Ns/m
- k = spring stiffness in N/m

Frequency Response of MSD System



where G is the ratio of relative displacement (output), x_0 to the absolute acceleration (input), x_i

 ω_n is the natural frequency , and

 ξ is the damping ratio.

Frequency Response Plot of MSD System

Smart Acceleration Sensors: ADXL Series

ADXL 150: Single-axis

ADXL

14-Pin dual-in-line (DIL) package

DC output

ADXL 250: Dual-axis

14-Pin dual-in-line (DIL) package

DC output

ADXL 210: Dual-axis

8-Pin leadless chip carrier (LLC) package PWM output

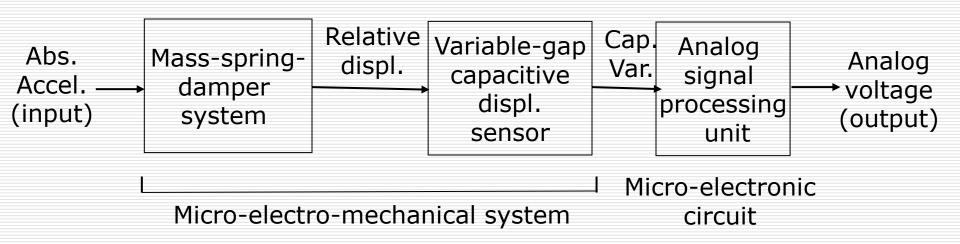
ADXL 345: Three-axis 14-Pin land grid array (LGA) package Digital serial output (SPI and I²C)

ADXL

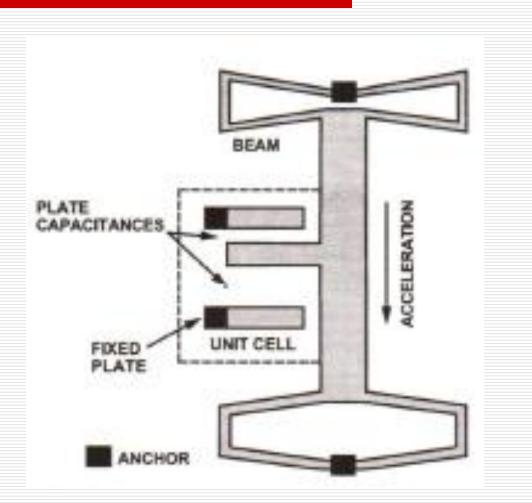
Common Features of ADXL Series

- □ MEMS sensing element and ASPU on a single IC chip
- Can measure dynamic acceleration (vibrations) as well as static acceleration (gravity)
- Ultra-small package
- □ Ultra-low weight (<1 gram)
- □ Low power (<0.5 mA @ Vs)
- Single-supply operation
- □ Large frequency bandwidth
- □ Bandwidth adjustment with a single capacitor
- Output is ratiometric to supply voltage
- Self test feature
- □ 1000 g shock survival
- MEMS is fabricated using surface micromachining process and electronic circuitry with monolithic IC technology.

Principle of ADXL-150


□ A mass-spring-damper (MSD) system converts absolute acceleration of the mass to relative displacement of the mass with respect to the base (silicon substrate).

□ A variable-gap capacitive sensor converts this relative displacement to capacitance variation.

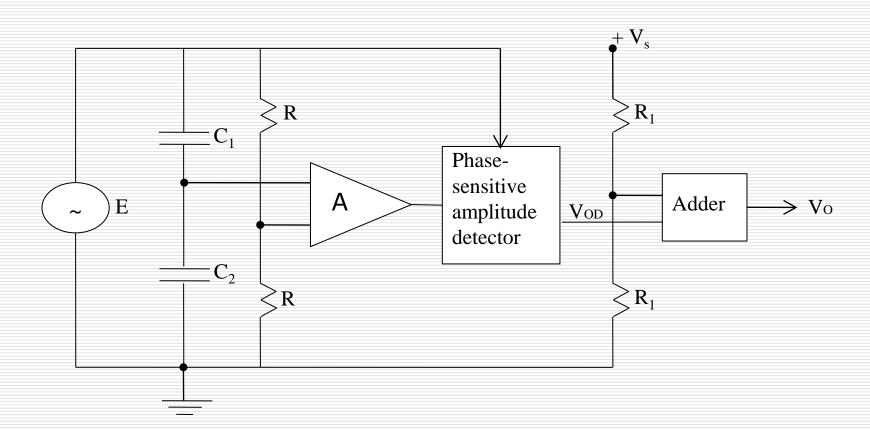

□ MSD system and capacitive sensor are made on a silicon chip as a micro-electro-mechanical system (MEMS) using surface micromachining technique.

□ An analog signal processing unit , integrated on the same silicon chip using monolithic IC technology, converts the capacitance variation to an analog voltage output.

Functional Block Diagram of ADXL-150

MEMS of ADXL

(Source: Data sheets of ADXL-150)


ADXL

Details of MEMS of ADXL

- Primary and secondary sensing elements are fabricated as a micro-electro-mechanical system (MEMS) using a proprietary surface micromachining process.
- Made by depositing poly-silicon on a sacrificial oxide layer that is then etched away leaving behind the suspended primary sensing element.
- Secondary sensing element has several capacitance cells for relative displacement of the mass (beam) w.r.t. the base (silicon substrate).
- MEMS also has several capacitance cells for electrostatically forcing the beam during self test.
- During self-test a force equivalent to 20% of full-scale acceleration acts on the beam and a proportional voltagechange appears on the output pin.

ASPU of ADXL-150

For acceleration = 0 : $C_1 = C_2 = C_2$, $V_{OD} = 0$ For acceleration = a : $C_1 = C + \triangle C \& C_2 = C - \triangle C$, $V_{OD} = +ve$ For acceleration = -a : $C_1 = C - \triangle C \& C_2 = C + \triangle C$, $V_{OD} = -ve$

ADXL

Output of ADXL-150

• Output of ASPU is ratio-metric and given by

$$V_0 = \frac{V_s}{2} + S.a. \frac{V_s}{5}$$

where

 V_0 = output voltage

- $V_s = supply voltage (actual)$
- S = sensitivity of the smart sensor in V/g @ 5V
- a = acceleration in g

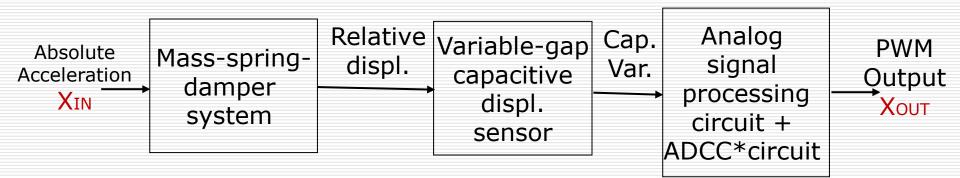
• The maximum value of $S.a.\frac{V_s}{5}$ is less than $\pm V_s/2$. • Therefore, the final output V_0 is always positive.

ADXL

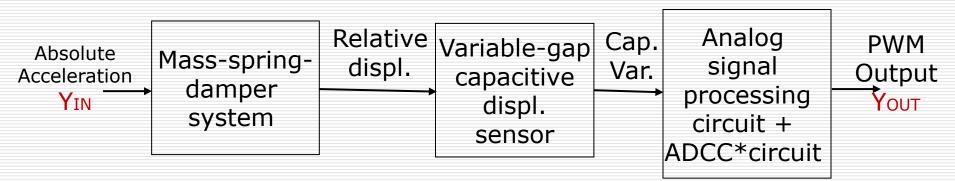
Specifications of ADXL-150

Input Range	:	± 50 g	
Power Supply (V _s)	:	4.0 V to 6.0 V Nominal value 5.0 V	
Sensitivity @ $V_s = 5V$:	38 mV/g	
Transverse Sensitivity	:	± 2%	
Zero-g offset	:	0.5 V _s	
Output Swing	:	0.25 V to (V _s -0.25 V)	
Sensor Resonant Freq.	:	24 kHz	
3dB Bandwidth	:	1 kHz	
Output change on Self Test	:	0.25 to 0.60 V	
Operating Temperature	:	0 to 70°C	

44

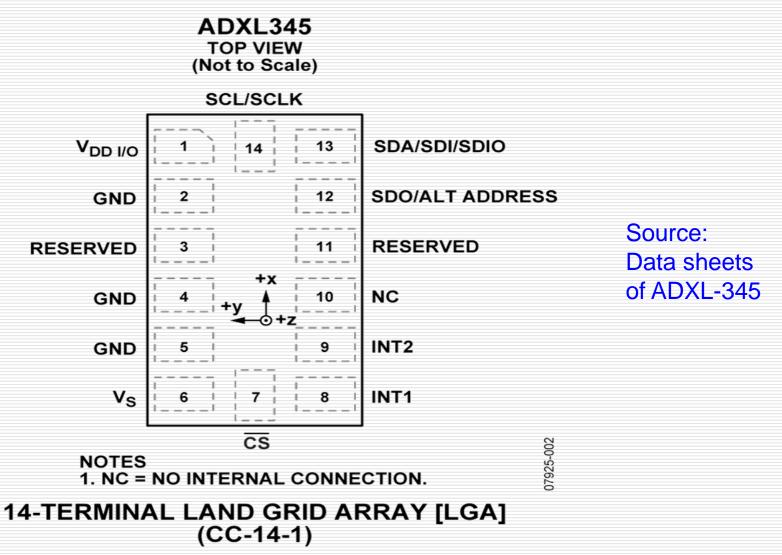

Important Features of ADXL-210E

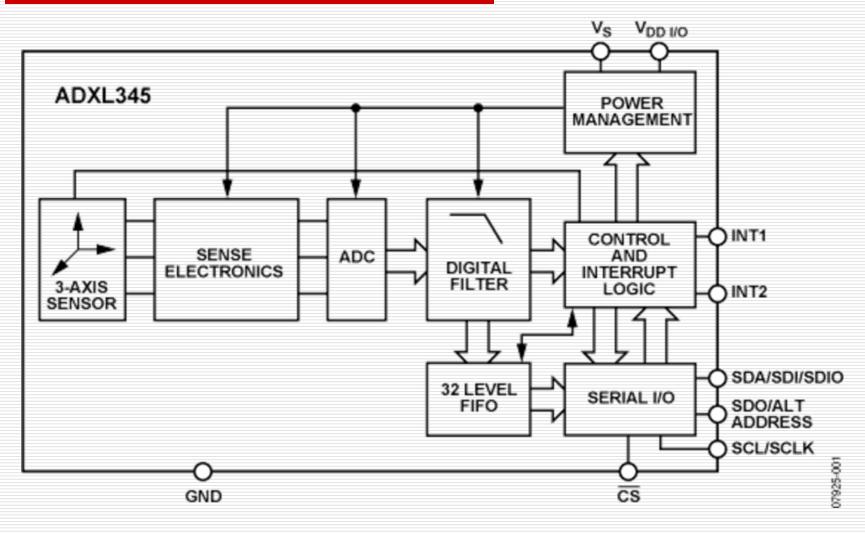
- Dual-axis sensor on a single IC chip
- Ultra-small chip (5x5x2 mm)
- Duty-ratio or PWM output, allowing direct interface to low-cost microcontrollers
- □ Adjustable duty cycle period (0.5 1.0 ms)
- □ Wide operating voltage range (3V 5.25V)
- Input range : ± 10 g


Principle of ADXL-210E

- Two sensors made on a single IC chip are oriented along mutually perpendicular directions.
- □ Each sensor (MEMS) is similar to that of ADXL-150.
- Output of each sensor (capacitance variation) is given to an analog signal processing circuit which converts it to an analog voltage.
- The analog voltage is converted into PWM output by an analog to duty-ratio converter (ADCC).
- The two analog signal processing circuits share a common oscillator to excite the two sensors.
- ADXL-210E gives two PWM outputs, XOUT and YOUT, on two different pins.

Functional Block Diagram of ADXL-210E


*ADCC: Analog to Duty-Cycle Converter


Important Features of ADXL-345

- □ Three-axis sensor on a single IC chip
- Ultra-small and thin package (3x5x1 mm)
- **Digital serial output:** SPI (3 & 4 wire) and I^2C
- 13-bit resolution
- □ Wide operating voltage range (2.0V 3.6V)
- Input range: ± 16 g

Pin Diagram of ADXL-345

Functional Block Diagram of ADXL-345

(Source: Data sheets of ADXL-345)

Case Study # 5

Smart Pressure Sensor

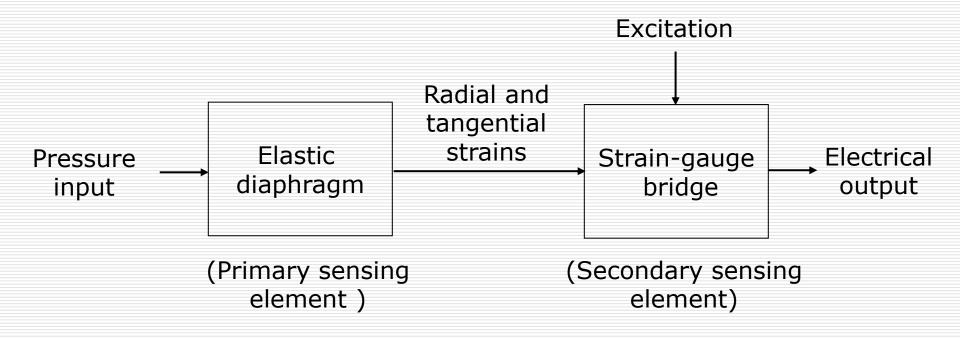
or

Integrated Silicon Pressure Sensor

Manufacturer: Freescale Semiconductor Inc.

Website: www.freescale.com

Case Studies of Smart Sensors & Smart MEMS


MPX5700...... Types of Pressure and Pressure Sensor

- □ Types of Pressure
 - > Differential pressure
 - Gauge pressure
 - > Absolute pressure
- □ Types of Pressure Sensor
 - Diaphragm with strain-gauges
 - Vibrating diaphragm
 - Piezoelectric

Principle of Conventional Pressure Sensor of Diaphragm Type using Strain Gauges (1)

- An elastic diaphragm, acting as *primary sensing element*, senses the pressure input and converts it into strains.
- Radial stress and strain are positive maximum at the periphery of the diaphragm
- So two strain gauges are placed along radial directions near the periphery of the diaphragm
- Tangential stress and strain are negative maximum at the centre of the diaphragm
- So two more strain gauges are placed along tangential directions near the centre of the diaphragm
- The four strain gauges are appropriately connected in a full bridge configuration
- □ This strain gauge bridge acts as *secondary sensing element.*

Principle of Conventional Pressure Sensor of Diaphragm Type using Strain Gauges (2)

MPX5700

Salient Features of MPX5700

- Monolithic silicon pressure sensor
- Diaphragm based piezo-resistive sensor
- High-level analog output signal
- Combines micromachining, bipolar integratedcircuit and thin-film metallization techniques
- Available for absolute, differential and gauge

pressure measurements

MPX5700

Variants of MPX5700

MPX5700A

- Smart *absolute* pressure sensor
- Has single pressure port

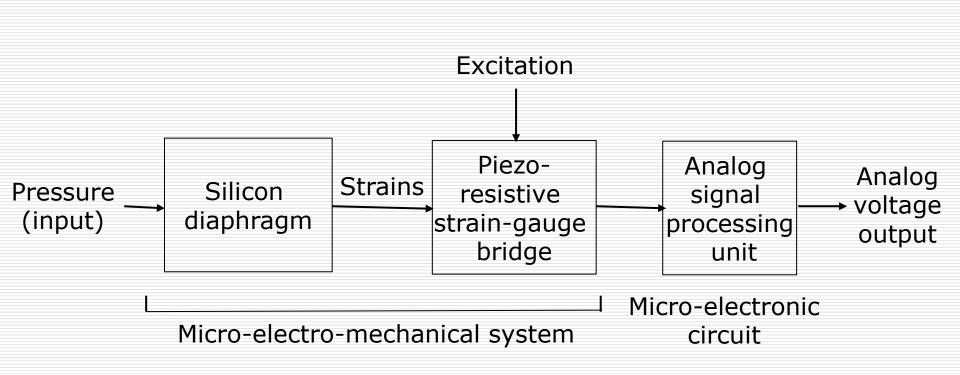
MPX5700D

- Smart *differential* pressure sensor
- Has two pressure ports

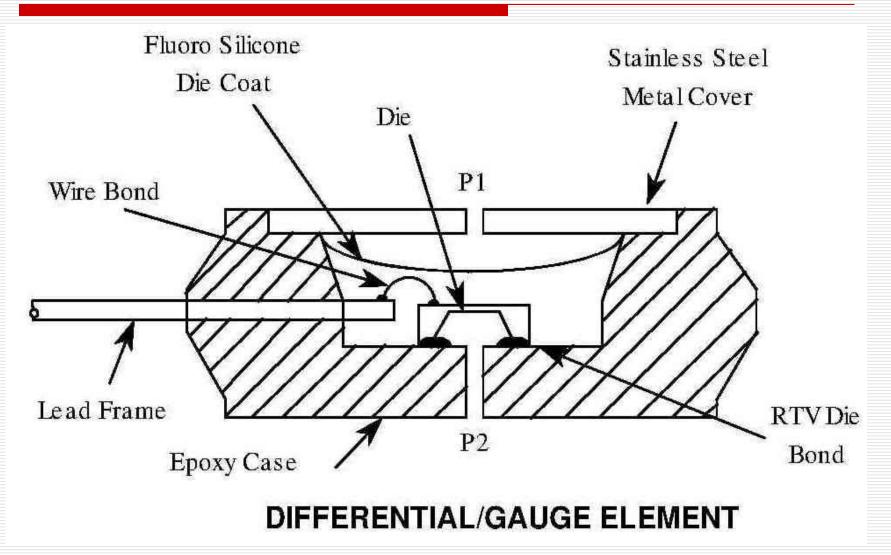
MPX5700G

- Smart gauge pressure sensor
- Has single pressure port
- With an opening to expose other side of diaphragm to atmosphere.

Principle of MPX5700

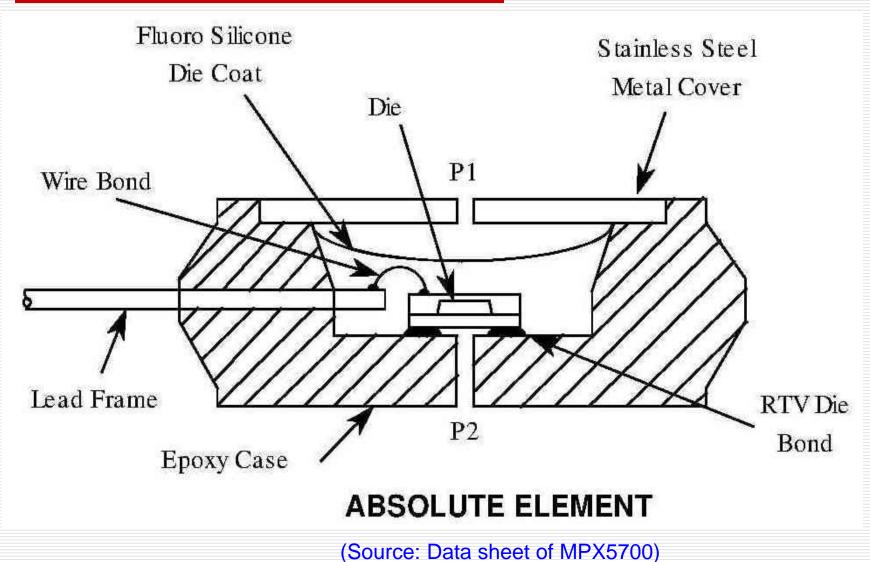

- A silicon diaphragm, serving as *primary sensing element*, converts pressure into tangential and radial strains.
- Strains are sensed by four piezo-resistive strain gauges connected as a full whetstone bridge, thus serving as secondary sensing element.
- □ The bridge output is amplified by a 2-stage amplifier.
- □ The amplified output signal is 0-4.7V @5.0V supply.

MPX5700.....


MPX5700...... Operating Characteristics of MPX5700

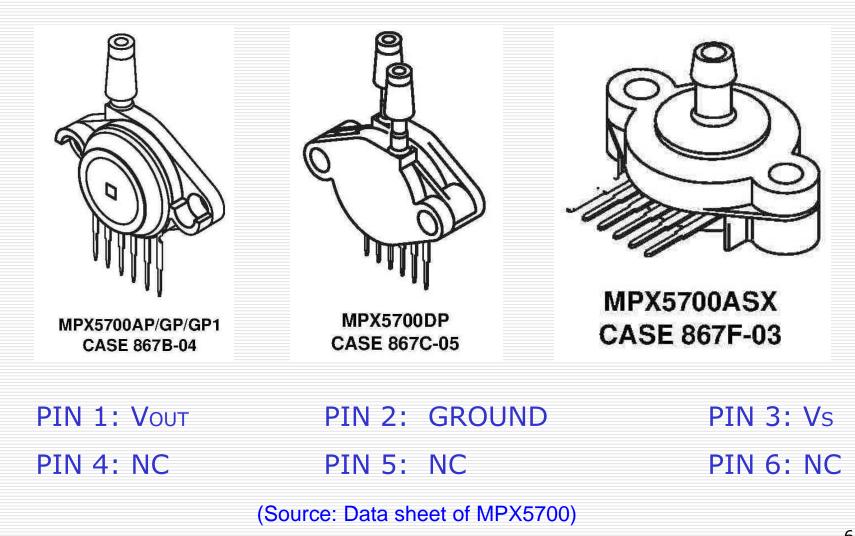
S. No.	Characteristic	Value
1	Pressure Range for Gauge/Differential sensors	0 – 700 kPa
2	Pressure Range for Absolute pressure sensors	15 – 700 kPa
3	Supply Voltage	5.0 ± 0.25V Vdc
4	Full Scale Output	4.7 Vdc
5	Accuracy	±2.5 %V _{FSS}
6	Sensitivity	6.4 mV/kPa
7	Response Time for 10% to 90% change	1.0 ms
8	Warm-Up Time	20 ms

Block Schematic of MPX5700


Cross-Sectional Diagram of MEMS for Differential/Gauge Pressure Sensing

(Source: Data sheet of MPX5700)

Case Studies of Smart Sensors & Smart MEMS


Cross-Sectional Diagram of MEMS for Absolute Pressure Sensing

Case Studies of Smart Sensors & Smart MEMS

MPX5700

Packages and Pins

Case Studies of Smart Sensors & Smart MEMS